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Goal of the Talk

• In this talk, we provide the minimality criterion for a rational
map of degree at least 2 with good reduction on the projective line
P1(Qp) over Qp. This criterion enables us to obtain a complete
description of minimal conditions for such a map on P1(Qp) in
terms of its coe�cients for p = 2 or 3. For an arbitrary prime
p � 5, we present a method of characterizing minimal rational
maps � of degree � 2 on P1(Qp), provided that the prescribed
conditions for the reduction of � on P1(Fp) to be transitive are
known.
As a prerequisite we characterize the minimality criterion for a
convergent power series f on Zp in terms of its coe�cients for an
arbitrary prime p.
• This is a joint work with Dohyun Ko, Yongjae Kwon and
Youngwoo Kwon.
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p-adic measurable dynamical systems on Zp

What are p-adic dynamical systems?

(1) p-adic measurable dynamical system on Zp :
It is made up of a triple (Zp, f , µ) where
�Zp is the ring of p-adic integers equipped with the p-adic
absolute value |x | := |x |p = p

�vp(x) where vp(x) is the p-adic
valutation on Zp. Denote by Qp the quotient field of Zp.
�f : a measurable(continuous) function f : Zp ! Zp.
�µ: a normalized measure on Zp so that µ(Zp) = 1.
Note that the measure of a ball of the form a+ p

nZp is defined as
its radius: µp(a+ p

nZp) = 1/pn.
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p-adic topological dynamical systems on P1
(Qp) :

(2) p-adic topological dynamical systems on P1(Qp) :
It consists of (P1(Qp),�) where
-P1(Qp) is the projective line over Qp equipped with the p-adic
chordal metric ⇢ defined as follows: for P = [x0, x1] and
Q = [y0, y1] 2 P1(Qp) = Qp [ {1},

⇢(P ,Q) =
|x0y1 � x1y0|

max{|x0|, |x1|}max{|y0|, |y1|}
.

Note that for z0, z1 2 Zp, ⇢(z0, z1) = |z0 � z1|.
- � is a rational map in Qp(z).
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1-Lipschitz functions

Definition

(1) A function f : Zp ! Zp is said to be 1-Lipschitz continuous if
|f (x)� f (y)|  |x � y | for all x , y 2 Zp.
(2) A map � : P1(Qp) ! P1(Qp) is said to be 1-Lipschitz
continuous if
⇢(�(P),�(Q))  ⇢(P ,Q) holds for all P ,Q 2 P1(Qp).

Then, every 1-Lipschitz function f : Zp ! Zp induces a sequence
of reduced functions, fn (n � 1), on quotient rings defined by
fn : Zp/pnZp ! Zp/pnZp, x + p

nZp 7! f (x) + p
nZp.

• Examples of 1-Lipschitz functions on Zp.

Z[x ] ⇢ Zp[x ] ⇢ Zphhzii ⇢ B(Zp) ⇢ Lip1(Zp),

where Zphhzii := the set of analytic functions on Zp in Zp[[x ]],
B(Zp) := {f (x) =

P1
m=0 am

�x
m

�
: am
m! 2 Zp, m = 0, 1, · · · }.
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Reduced functions of a 1-Lipschitz function on P1
(Qp)

P1(Qp) consists of the set of (p + 1)pn disjoint balls Bn(x) of
radius p�n defined by

Bn(x) :=
�
z 2 P1(Qp)

�� ⇢(z , x)  p
�n
 
.

Bn denotes the set of such balls.
Note that as P1(Qp) is an infinite tree, for each n, there is a
one-to-one correspondence between the set Bn and the set of
vertices of the tree at level n.
Every 1-Lipschitz continuous map � : P1(Qp) ! P1(Qp) induces a
sequence of reduced transformations �n : Bn ! Bn defined by:

�n(Bn(x)) = Bn(�(x)) for all x 2 P1(Qp).
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Basic properties of convergent series in Zphhzii
The basic properties for Zphhzii can be summarized in the
following proposition.
(1) Each series in Zphhzii is a 1-Lipchitz function on Zp.
(2) Zphhzii is closed under addition, multiplication,

di↵erentiation, and composition.
(3) Each f 2 Zphhzii has a Taylor expansion at any x 2 Zp; i.e.,

f (x + z) =
1X

m=0

f
(m)(x)

m!
z
m,

where f (m)(x)
m! is a p-adic integer for all m � 0.

(4) Qphhzii is a complete normed space with respect to the
sup-norm k · k.

(5) p-adic division algorithm for Zphhzii works.
(6) p-adic Weierstrass preparation theorem for Zphhzii holds.
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Terminologies in p-adic dynamical systems

[Definition] Let (Zp, f , µp) be a p-adic dynamical system on Zp.
(1) A function f : Zp ! Zp is said to be measure-preserving if
µp(f �1(M)) = µp(M) for each measurable subset M ⇢ Zp.

(2) A measure-preserving function f : Zp ! Zp is said to be
ergodic if it has no proper invariant subsets (i.e., either µp(M) = 1
or µp(M) = 0 holds for any measurable subset, M ⇢ Zp, such that
f
�1(M) = M).

[Definition] Let (P1(Qp),�) be a topological dynamical system.
Let E be a �-invariant set (i.e. �(E ) ⇢ E ). The subsystem (E ,�)
is said to be minimal if the orbit of x under � is dense in E for all
x 2 E .
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Basic facts in p-adic dynamical systems

Proposition 1. Let f : Zp ! Zp be a 1-Lipschitz function. Then,
the following are equivalent:
(1) (Zp, f ) is minimal;
(2) (Zp/pnZp, fn) is minimal for all integers, n � 1;
(3) f is ergodic.
In particular, if f is a convergent series in Zp[[x ]], then (Zp, f ) is
minimal if and only if (Zp/pµZp, fµ) is minimal where
µ = µ(p) = 3 if p = 2, 3 and µ = 2 if p � 5.
Proposition 1’[Fan-Fan-Liao-Wang, 2017]
Let � : P1(Qp) ! P1(Qp) be a 1-Lipschitz continuous map. Then
(P1(Qp),�) is minimal if and only if the finite system (Bn,�n) is
minimal for all integers n � 1.
In particular, if � is a rational map on P1(Qp) with good
reduction, then (P1(Qp),�) is minimal if and only if (Bµ,�µ) is
minimal where µ is as in the above.
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Basic facts in p-adic dynamical systems

An e�cient minimality criterion for a convergent series in Zphhxii
is known.
Proposition 2. Let f : Zp ! Zp be a convergent series in Zphhxii
satisfying that (Zp/pnZp, fn) is minimal for n � 1. Then, the
followings are equivalent:
(1)

�
Zp/pn+1Zp, fn+1

�
is minimal;

(2) For all x 2 Zp, we have that f p
n
(x)� x 62 p

n+1Zp and�
f
pn
�0
(x) 2 1 + pZp; and

(3) There exists x 2 Zp such that f p
n
(x)� x 62 p

n+1Zp, and�
f
pn
�0
(x) 2 1 + pZp.

This is the case where the cycle � of length p
n that arises from fn,

grows in the well known linearization arguments for minimality.
The analogue for a rational map with good reduction on P1(Qp)
also works.
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Another minimality criterion for p-adic series in Zphhzii
For a prime p, we set

µ := µ(p) = 3 if p 2 {2, 3}; 2 otherwise.

�(z) := �p(z) =

( � z
p2
�

if p 2 {2, 3};� z
2p

�
if p � 5.

Theorem

Let f (z) 2 Zphhzii be a convergent series. Then f is minimal on

Zp if and only if the reduction of f (z) modulo �(z) is minimal on

Zp.

Proof. Use the p-adic division algorithm for convergent series in
Zphhzii to write f (z) = (deg �)!q(z) �(z) + r(z).
It follows from Proposition 1 by observing that pµ|(deg �)!.
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Complete minimality criterion for various functions over Z2

Theorem.(Larin) A polynomial,
f (x) = a0 + a1x + · · ·+ adx

d 2 Z2[x ], is minimal if and only if the
system of the following relations is fulfilled:

a0 ⌘ 1 (mod 2);

a1 ⌘ 1 (mod 2);

A1 � a1 ⌘ 2a2 (mod 4); and

A0 ⌘ a1 + 2a2 � 1 (mod 4).

• Durand and Paccaut presented a minimal criterion for
polynomials over Z2, equivalent to that of Larin.
• Anashin characterized the minimality for convergent series over
Zp. In general, he gave a complete minimal criterion for
1-Lipschitz functions in terms of the Mahler expansion coe�cients.
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Complete minimality criterion for convergent series over Z3

• Durand and Paccaut presented a minimal criterion for
polynomials f over Z3, under the assumption that f (0) = 1.

For a convergent series, f (z) =
P

anz
n 2 Z3hhzii,

set
A0 :=

X

i⌘0 (mod 2),i>0

ai , A1 :=
X

i⌘1 (mod 2)

ai ;

D0 :=
X

i⌘0 (mod 2),i>0

iai , D1 :=
X

i⌘1 (mod 2)

iai .

Set D 0
1 = D0 + D1,D 0

2 = �D0 + D1.
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Minimality criterion for convergent series over Z3

Theorem

A convergent series f (z) =
P

anz
n 2 Z3hhzii, is minimal if and

only if f fulfills one of the conditions (i)–(viii):

Setting [a0,A1,A0, a1,D 0
1,D

0
2] mod3 = [·, ·, · · · , ·],

(i) [1, 1, 0, 1, 1, 1],
A0 + 6 6⌘ 0 [9], A0 + 6 6⌘ 6a2 + 3

P
j�0 a6j+2 [9];

(ii) [1, 1, 0, 1, 2, 2],
A1 + a0 + 4 6⌘ 0 [9], A1 + a0 + 4 6⌘ 3a2 + 3

P
j�0 a6j+5 [9];

(iii) [1, 1, 0, 2, 1, 2],
A1 + 2a0 + 3 6⌘ 0 [9], A1 + 2a0 + 3 6⌘ 6a2 + 3

P
j�0 a6j+5 [9];

(iv) [1, 1, 0, 2, 2, 1],
A0 + 2a0 + 4 ⌘ 0 [9], A0 + 2a0 + 4 6⌘ 3a2 + 6

P
j�0 a6j+2 [9];
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Minimality criterion for convergent series over Z3

(Continued) There are 4 more cases.

Theorem

(v) [2, 1, 0, 1, 1, 1],
A0 + 3 6⌘ 0 [9], A0 + 3 6⌘ 6a2 + 3

P
j�0 a6j+2 [9];

(vi) [2, 1, 0, 1, 2, 2],
A1 + 2a0 + 7 6⌘ 0 [9], A1 + 2a0 + 7 6⌘ 6a2 + 3

P
j�0 a6j+5 [9];

(vii) [2, 1, 0, 2, 1, 2],
A0 +2a0 +5 6⌘ 0 [9], A0 +2a0 +5 6⌘ 3a2 +3

P
j�0 a6j+2 [9];

(viii) [2, 1, 0, 2, 2, 1],
A1 + a0 + 6 6⌘ 0 [9], A1 + a0 + 6 6⌘ 3a2 + 3

P
j�0 a6j+5 [9].

• There are terms of higher powers of a0 in the DP’s criterion for a
polynomial f with f (0) 6= 1 because g(x) = f (a0x)

a0
.
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Idea of proof for the case p = 3 and general cases

Lemma A. Let f be a convergent series over Z3. Then, f is
minimal if and only if the following conditions are satisfied:

(M1) f/1 is transitive (i.e., f is transitive modulo 3);
(M2) (f 3)0(0) ⌘ 1 (mod 3);
(M3) f 3(0) 2 3Z3 \ 9Z3; and
(M4) 3(f 3)00(0)� 2f 3(0) 6⌘ 0 (mod 9).

• Use the arguments in Linear Algebra to decompose f into a sum
of the form f (x) = r(x) + 3h(x).
Remark. p-adic Weierstrass preparation theorem enables us to
adapt this method to the general primes p � 5, along with the
following
Lemma B. A convergent series, f 2 Zphhzii, is minimal if and
only if the following conditions are satisfied:
(E1) f is transitive modulo p;
(E2) (f p)0(0) ⌘ 1 (mod p); and
(E3) f p(0) 2 pZp \ p2Zp.
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Minimality criterion for convergent series over Zp for p � 5

Theorem

Let f 2 Zphhzii be a convergent series of the form

f (z) = g(z) + ph(z), of widegree N, and of norm 1. Then f is

minimal on Zp if and only if the following conditions are satisfied:
(1) g(x) is a transitive polynomial modulo p of degree N, of

which the full cycle is given by (⇠0, ⇠1, · · · , ⇠p�1) where
{⇠0 := 0, ⇠1, · · · , ⇠p�1} = Fp;

(2)

p�1Y

i=0

g
0(i) ⌘ 1 (mod p); and

(3)

pX

i=1

(g(⇠i�1)� ⇠i )wi + p

pX

i=1

h(⇠i�1)wi 6⌘ 0 (mod p
2),

where

wi =
Qp�1

j=i g
0(⇠j) for 1  i  p � 1,wp = 1 and ⇠p = 0.
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Several corollaries

Corollary (For later use, referred to as Corollary 1)

The dynamical system (pZp,�p+1 =
P1

i=0 �iz
i ) is minimal if and

only if (Zp,� =
P1

i=0 uiz
i ) is minimal, where ui = p

i�1�i for all
i � 0. (Note that (pZp,�p+1) is conjugate to (Zp,� =

P1
i=0 uiz

i )
by the transformation ⌘(z) = z/p.)
(i) for p = 2,
u0 ⌘ 1(mod p), u1 ⌘ 1 (mod p), u3 ⌘ 2u2 (mod p2).
, �0/p ⌘ 1 (mod p),�1 ⌘ 1 (mod p),�1 + 2�2 ⌘ 1 (mod p2).
(ii) for p = 3,
u0 6⌘ 0 (mod p), u1 ⌘ 1 (mod p), u2/p 6⌘ u0 (mod p).
, �0/p 6⌘ 0 (mod p), �1 ⌘ 1 (mod p) �2 6⌘ �0/p (mod p).
(iii) for p � 5,
u0 6⌘ 0 (mod p), u1 ⌘ 1 (mod p).
, �0/p 6⌘ 0 (mod p), �1 ⌘ 1 (mod p).
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Several corollaries

Corollary

Let f (z) =
P

n�0 anz
n 2 Zphhzii be a convergent series that

satisfies the following system of relations:

8
>>>>>>><

>>>>>>>:

a0 6⌘ 0 (mod p);

a1 ⌘ 1 (mod p);

ai ⌘ 0 (mod p) for i � 2; andX

i2(p�1)Z
i 6=0

ai 6⌘ pa0 (mod p
2).

Then, f is minimal on Zp.

This is a generalization of minimal conditions for polynomials in
Zp[z ] that was proved by M. Javaheri and G. Rusak whose proof is
based on the power sum involving the Bernoulli numbers.
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Rational maps with good reduction

Any rational map � on P1(Qp) of degree d � 2 is expressed as a
quotient of two polynomials f and g in Zp[z ] with no common
roots, such that at least one coe�cient of f or g is a unit in Zp.
[Definition] A rational map � has good reduction if
deg(�) = deg(�̄), where the reduced rational function �̄ is defined

as �̄ = f̄
ḡ , where h̄ 2 Fp[z ] is the reduced polynomial of h 2 Zp[z ]

modulo p.

Proposition

If � is a rational map with good reduction on P1(Qp), then it is

1-Lipschitz continuous , that is, � satisfies the following inequality

with a Lipschitz constant 1, for all P ,Q 2 P1(Qp),
⇢(�(P),�(Q))  ⇢(P ,Q).

For a proof see [Theorem 2.17] in Silverman’s book, the arithmetic
of dynamical systems.
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Minimal criteria for rational maps with good reduction

If a rational map � 2 Qp(z) has good reduction, then the reduced
rational map �̄ 2 Fp(z) induces a map on P1(Fp), the projective
line over Fp.

Theorem (Fan-Fan-Liao-Wang, 2017)

Let � 2 Qp(z) be a rational map of deg � � 2 with good

reduction. Then the dynamical system (P1(Qp),�) is minimal if

and only if the following conditions are satisfied:
(1) the reduction �̄ is transitive on P1(Fp);
(2) (�p+1)0(0) ⌘ 1 (mod p) and |�p+1(0)| = 1/p; and
(3) additionally, for the cases of p = 2 or 3,

|�(p+1)p(0)| = 1/p2.
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Minimal criteria for rational maps with good reduction

Theorem (JKKK,2021)

Let � 2 Qp(z) be a rational map of deg � � 2 with good

reduction. Then the dynamical system (P1(Qp),�) is minimal if

and only if the following conditions are satisfied:
(1) the reduction �̄ is transitive on P1(Fp);
(2) (�(p+1))0(0) ⌘ 1 (mod p) and |�(p+1)(0)| = 1/p; and
(3) additionally,

for p = 2, (�(p+1))0(0) + (�(p+1))00(0) ⌘ 1 (mod p
2);

for p = 3, 1
p�

(p+1)(0)� 1
2(�

(p+1))00(0) 6⌘ 0 (mod p).

Note that condition (3), |�(p+1)p(0)| = 1/p2, of the previous
Theorem[FFLW] is replaced by a simper condition involving the
first and second derivatives of �(p+1)(z) at z = 0.
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Sketchy proof of the main result

For su�ciency, note that cond.(1) implies that �p+1 =
P1

i=0 �iz
i

is 1-Lipschitz continuous on pZp.
It su�ces to show that the dynamical system
(pZp,�p+1 =

P1
i=0 �iz

i ) is minimal. Equivalently, the system
(Zp,� =

P1
i=0 uiz

i ) is minimal. From Corollary 1, by noting that
�0 = �p+1(0),�1 = (�p+1)0(0),�2 =

1
2(�

p+1)00(0).
the minimal conditions for � (hence �p+1) are,
for p = 2, u0 ⌘ 1(mod p), u1 ⌘ 1 (mod p), u3 ⌘ 2u2 (mod p2).
, �0/p ⌘ 1 (mod p),�1 ⌘ 1 (mod p),�1 + 2�2 ⌘ 1 (mod p2).
for p = 3, u0 6⌘ 0 (mod p), u1 ⌘ 1 (mod p), u2/p 6⌘ u0 (mod p).
, �0/p 6⌘ 0 (mod p), �1 ⌘ 1 (mod p),�2 6⌘ �0/p (mod p).
for p � 5, u0 6⌘ 0 (mod p), u1 ⌘ 1 (mod p).
, �0/p 6⌘ 0 (mod p), �1 ⌘ 1 (mod p).
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Sketchy proof of the main result

The necessity follows from the following fact of Fan et al.
Theorem [Fan-Fan-Liao-Wang, 2017]. Let
� : P1(Qp) ! P1(Qp) be a rational function with good
reduction. Then
(i) (P1(Qp),�) is minimal if and only if
(ii) (Bµ,�µ) is minimal where µ = µ(p) = 3 if p = 2, 3 and
µ = 2 if p � 5.
By (ii), the minimality of (B1,�1) implies that the reduction �̄ is
transitive on P1(Fp), which is assertion(1). It also yields a
convergent series �p+1(z) = �0 + �1z + �2z2 + �3z3 + · · · .
The minimality of (B2,�2) implies assertion (2).
For the cases where p = 2 or 3, the minimality of (B3,�3) implies
|�(p+1)p(0)| = 1/p2.
By doing some algebras, for p = 2, it is equivalent to
(�3)0(0) + (�3)00(0) ⌘ 1 (mod 4) in assertion(3).
for p = 3, it is equivalent to 1

3�0 6⌘ �2 (mod 3) in assertion(3)
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Minimal conditions of rational maps for the case p=2 in

terms of coe�cients

Setup: Let � be a rational map � of degree d � 2 of the form

�(z) =
A(z)

B(z)
=

a0 + a1z + · · ·+ ad�1z
d�1 + z

d

b1z + · · ·+ bd�1z
d�1 + zd

2 Q2(z), (1)

satisfying �(0) = 1 and �(1) = 1 with ai , bi 2 Q2.
This is possible by the linear fractional transformation g of the
form,

g(z) =
(z � z0)(�2(z0)� �(z0))

(z � �(z0))(�2(z0)� z0)
.

Set A� =
P

i�0 ai ,B� =
P

i�1 bi ,
A�,1 =

P
i�0 a2i+1,A�,2 =

P
i�0 a4i+1,A�,3 =

P
i�0 a4i+3.
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Minimal conditions for rational maps for the case p=2

Theorem (Fan-Fan-Liao-Wang, 2017)

If � in (1) has good reduction and is minimal on P1(Q2), then:

8
>>>>>>>>><

>>>>>>>>>:

(C1) ai , bi 2 Z2, for 0  i  d � 1,

(C2) a0 ⌘ 1 (mod 2), (C3) B� ⌘ 1 (mod 2),

(C4) A� ⌘ 2 (mod 4), (C5) A�,1 ⌘ 1 (mod 2),

(C6) b1 ⌘ 1 (mod 2), (C7) ad�1 � bd�1 ⌘ 1 (mod 2),

(C8) a0b1(ad�1 � bd�1)(A�,2 � A�,3)B�+

2(b2 � a1 + ad�2 � bd�2 + bd�1 + A�,3) ⌘ 1 (mod 4).
(2)

Conversely, these conditions imply that � is 1-Lipschitz continuous

and minimal on P1(Q2).
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Equivalent minimal conditions for p = 2

Theorem (JKKK,2021)

If � in (1) has good reduction and is minimal on P1(Q2), then
conditions (C1)-(C8) in Theorem FFLW are satisfied with (C8)

replaced by the following condition:

(C80)A�,1 + B� + ad�1 + bd�1 + a0 + b1+

2 (b2 � a1 + ad�2 � bd�2) ⌘ 1 (mod 4).

Conversely, the conditions (C1)-(C7) and (C80) imply that � is

1-Lipschitz continuous and minimal on P1(Q2).

Note that two conditions (C8) and (C80) are equivalent to each
other because for five odd elements xi (1  i  5) in Z2, we haveQ5

i=1 xi ⌘
P5

i=1 xi (mod 4), and the relation A�,1 = A�,2 + A�,3.
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Equivalent minimal conditions for p = 2

Sketchy proof of the case p = 2
(1) Use the minimal conditions of (P1(Q2),�):
(i) the reduction �̄ is transitive on P1(F2);
(ii) |�0 = �3(0)| = 1/2 and �1 = (�3)0(0) ⌘ 1 (mod p); and
(iii) �1 + �2/2 = (�3)0(0) + (�3)00(0) ⌘ 1 (mod 22)
(2) Find the coe�cients �0,�1,�2 of a convergent series
�3(z) = �0 + �1z + �2z2 + O(z3) by decomposing �3 into a
composition of simper convergent series of the form

�3 = '3 � '2 � '1,

where, for ⇢(z) = 1/z , and Ta(z) = z + a,
8
><

>:

'1 = ⇢ � � = t11z + t12z
2 + O(z3),

'2 = T�1 � � � ⇢ = t21z + t22z
2 + O(z3),

'3 = � � T1 = t30 + t31z + t32z
2 + O(z3).

The results follow from computing (ii) and (iii) involving tij .
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Example for a minimal rational map for p = 2

It is known that there are no rational maps on P1(Q2) of degrees
2, 3, or 4 with good reduction, so we illustrate a rational map on
P1(Q2) of degree 5 with good reduction.

Example

Let �(z) =
1 + 2z + 2z4 + z

5

3z + 2z2 � 3z4 + z5
be a rational map of degree 5 on

P1(Q2). Then the reduction modulo 2 of � is

�̄ =
(z + 1)(z4 + z

3 + z
2 + z + 1)

z(z4 + z3 + 1)
.

Therefore, � has good reduction. By the minimal conditions,
(P1(Q2),�) is minimal, of which periodic orbit of the induced
system of � at level 3 is given by:
0 ! 1 ! 1 ! 2 ! 6̃ ! 3 ! 4 ! 4̃ ! 5 ! 6 ! 2̃ ! 7,
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Minimal conditions of rational maps for p = 3

Let � be a rational map of the form

�(z) =
A(z)

B(z)
=

a0 + a1z + · · ·+ ad�1z
d�1 + z

d

b1z + · · ·+ bd�1z
d�1 + zd

2 Q3(z), (3)

which satisfies �(0) = 1 and �(1) = 1 with ai , bi 2 Q3.
Set: A� =

P
i�0 ai , B� =

P
i�1 bi , A�,k,l =P

i�0 aki+l , B�,k,l =
P

i�0 bki+l for 0  l  k .
Set the following rational maps { i}1i4 to decompose
�4 =  4 �  3 �  2 �  1 of �3(z) = �0 + �1z + �2z2 + O(z3) :

8
>>>><

>>>>:

 1 = ⇢ � � = s11z + s12z
2 + O(z3),

 2 = T�1 � � � ⇢ = s21z + s22z
2 + O(z3),

 3 = T��(1) � � � T1 = s31z + s32z
2 + O(z3),

 4 = � � T�(1) = s40 + s41z + s42z
2 + O(z3)

The results follow from computing the relations
�0/3 6⌘ 0 [3],�1 ⌘ 1 [3],�2 6⌘ �0/3 [3] involving sij .
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Minimal conditions of rational maps for the case p=3

Theorem (JKKK,2021)

If � has good reduction and is minimal on P1(Q3), then � satisfies

the following conditions:

(a)
8
>>>><

>>>>:

ai , bi 2 Z3, for 0  i  d � 1,

a0 6⌘ 0 (mod 3),

A(1) ⌘ 2B(1) (mod 3) and B(1) 6⌘ 0 (mod 3),

A(2) ⌘ 0 (mod 3) and B(2) 6⌘ 0 (mod 3).

The above conditions correspond to the fact that the reduction �̄
is transitive on P1(F3).
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Minimal conditions of rational maps for the case p=3

Theorem (JKKK,2021)

(b) Additionally, � satisfies one of the conditions, (i)-(viii):

Set u0 :=
⇣
A(2)
3 B(2) + (A(1)�2B(1))

3 B(1)B(2)A0(2)
⌘
mod 3;

[s11, s21, s31, s41] mod 3 = [·, ·, ·, ·].
(i) [1, 1, 1, 1], u0 6⌘ 0[3], s12 + s22 + s32 + s42 6⌘ u0[3];
(ii) [1, 1, 2, 2], u0 6⌘ 0[3], s12 + s22 � s32 + s42 6⌘ u0[3];
(iii) [1, 2, 1, 2], u0 6⌘ 0[3], s12 � s22 � s32 + s42 6⌘ u0 [3];
(iv) [1, 2, 2, 1], u0 6⌘ 0[3], s12 � s22 + s32 + s42 6⌘ u0 [3];
(v) [2, 1, 1, 2], u0 6⌘ 0[3],�s12 � s22 � s32 + s42 6⌘ u0 [3];
(vi) [2, 1, 2, 1], u0 6⌘ 0[3],�s12 � s22 + s32 + s42 6⌘ u0 [3];
(vii) [2, 2, 1, 1], u0 6⌘ 0[3],�s12 + s22 + s32 + s42 6⌘ u0 [3]; and
(viii) [2, 2, 2, 2], u0 6⌘ 0[3],�s12 + s22 � s32 + s42 6⌘ u0 [3].

Conversely, the conditions above imply � is minimal on P1(Q3).
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Example for a minimal rational map for p = 3

Example

Let �(z) =
2 + z + z

2 + 2z4 + z
5

2z + 2z3 + z5
be a rational map of degree 5

on P1(Q3). Then the reduction modulo 3 of � is

�̄ = (z+1)(z4+z3+2z2+2z+2)
z(z4+2z2+2) . Thus, � has good reduction. By

checking [s11, s21, s31, s41] mod 3 = [1, 2, 1, 2] in case (iii),
[s12, s22, s32, s42] mod 3 = [1, 1, 1, 1], and [�0

3 ,�2] mod 3 = [2, 0],
the periodic orbit of a minimal � at level 3 is given by:
0 ! 1 ! 1 ! 23 ! 15 ! 2̃4 ! 4 ! 8 ! 12 ! 2̃1 ! 25 ! 2
! 18 ! 1̃8 ! 10 ! 5 ! 6 ! 1̃5 ! 13 ! 17 ! 3 !! 1̃2 ! 7
! 11 ! 9 ! 9̃ ! 19 ! 14 ! 24 ! 6̃ ! 22 ! 26 ! 21 ! 3̃
! 16 ! 20.
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Minimal conditions for a rational map for the case p � 5

Theorem (JKKK,2021)

Let p be a prime � 5 and �(z) = A(z)
B(z) 2 Qp(z) be a rational map

of deg � � 2 with good reduction. If the dynamical system

(P1(Qp),�) is minimal, then the following conditions are satisfied:

(1) The reduction �̄ is transitive on P1(Fp), of which the full cycle

is given by (0,1, ⇠1, · · · , ⇠p�1) where
{⇠1 := 1, ⇠2, · · · , ⇠p�1} = F⇤

p.

(2)
b1

a0
(ad�1 � bd�1)

p�1Y

i=1

A
0(i)B(i)� A(i)B 0(i)

B2(i)
⌘ 1 (mod p).

(3) �(⇠p�1) + (�(⇠p�2)� ⇠p�1)wp�1 + · · ·+ (�(⇠1)� ⇠2)w2 6⌘ 0

(mod p
2) for 2  i  p � 1, wi =

Qp�1
j=i �

0(⇠j).
Conversely, if the above conditions are satisfied, then � is a

1-Lipschitz continuous minimal map on P1(Qp).
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Minimal conditions for p � 5

Using the decomposition of �p+1 = ⌘p+1 � ⌘p · · · ⌘2 � ⌘1 consisting
of the following convergent series:
8
>>>><

>>>>:

⌘1 = ⇢ � � = b1/a0z + O(z2),

⌘2 = T��2(0) � � � ⇢ = (ad�1 � bd�1)z + O(z2),

⌘i = T��i (0) � � � T�i�1(0) = �0(�i�1(0))z + O(z2) (3  i  p), and

⌘p+1 = � � T�p(0) = �p+1(0) + �0(�p(0))z + O(z2),
(4)

we find the constant term and the term of degree 1 so that

�p+1(z) = �p+1(0) +
b1

a0
(ad�1 � bd�1)�

0(�2(0)) · · ·�0(�p(0))z + O(z2).
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Example for a minimal rational map for primes p � 5

Example

Let �(z) =
5 + 4z + 3z2 + 4z4 + z

5

4z + 7z2 + 3z4 + z5
be a rational map of degree

5 on P1(Q7). Then the reduction modulo 7 of � is

�̄ =
(z + 1)(z4 + 3z3 + 4z2 + 6z + 5)

z(z4 + 3z3 + 4)
.

Therefore, � has good reduction. Since the full cycle of �̄ is
given by (0,1, ⇠1, ⇠2, ⇠3, ⇠4, ⇠5, ⇠6) = (0,1, 1, 3, 2, 4, 5, 6), the
reduction � is transitive on P1(F7). By checking that
[r1, r0, r1, · · · , r6] = [5, 1, 3, 2, 2, 5, 2, 3] and
[w2,w3,w4,w5,w6] = [1, 4, 2, 6, 3], conditions (2) and (3) of the
previous Theorem are satisfied as �0 ⌘ 28 mod 49 , so the
dynamical system (P1(Q7),�) is minimal.
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Example for a minimal rational map for primes p � 5

The periodic orbit of minimal length 56 of the induced system of �
at level 2 is given by:

0 ! 1 ! 1 ! 24 ! 23 ! 46 ! 26 ! 34 ! 28 ! 4̃2 ! 43
! 3 ! 30 ! 11 ! 47 ! 27 ! 7 ! 3̃5 ! 36 ! 31 ! 37
! 25 ! 19 ! 20 ! 35 ! 2̃8 ! 29 ! 10 ! 44 ! 39x ! 40
! 13 ! 14 ! 2̃1 ! 22 ! 38 ! 2 ! 4 ! 12 ! 6 ! 42
! 1̃4 ! 15 ! 17 ! 9 ! 18 ! 33 ! 48 ! 21 ! 7̃ ! 8
! 45 ! 16 ! 32 ! 5 ! 41.
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Some remarks
1. Without a change of coordinates we obtain the following crucial
relation:

�0(0)�0(1) =
b1

a0
(ad�1 � bd�1).

2. It is of great interest to characterize a minimal rational function
f (z) 2 Fp(z) satisfying f (0) = 1 and f (1) = 1 in terms of its
coe�cients , as in permutation polynomials over finite fields.
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Thank you for your attention !!!
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